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DEFECT ANNEALING IN IRRADIATED SEMICONDUCTORS 

INTRODUCTION 

This report describes progress for the period October 1, 1964 to March 31, 1965 

in the research program supported by NASA Research Grant NsG-602. 

Research work in this period involved: 

1. Extension of the annealing model to include an arbitrarily large number 

of secondary defect complexes. 

2. Solution of the annealing equations with any number of secondary defect 

complexes. 

3. Computer calculations and data analysis to evaluate the behavior of the 

kinetic annealing model with one secondary defect complex. 

There was one publication during the report period: 

"Model For Defect Annealing in Diamond Lattice Semiconductors" by W. Maurice 

Pritchard, Bulletin of the American Physical Society, Series 11, Vol. 10, 

No. 3, 1965. 
'i !I 

EXTENSION OF THE ANNEALING MODEL TO INCLUDE MORE THAN ONE SEGONDARY DEFECT COMPLEX 

The kinetic annealing model can be readily extended to include two secondary 

defect complexes. 

-- -- 

The schematic representation of this extended model is 

KA 
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KIF 
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where 

V - concentration of free vacancies 

i = concentration of interstitials 
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- concentration of type 1 impurity 

I2 = concentration of type 2 impurity 
I1 

c1 
= concentration of type 1 defect complex 

C = concentration of type 2 defect complex 
2 

The K's are rate constants. 

This schematic representation is based on the assumption that the two defect 

complexew involve different impurity elements, However, the same representation 

can be used if only one impurity element i s  involved. In this latter case, 

I = I  
2 1. 

The annealing equations consistent with this model are 

di - dt = -KAvi 

(3) 

(4) 

i =  V 4 - e  + c 2  ( 5  1 1 
where IO1 and Io2 are impurity concentrations at t = 0. 

using the conservation relation ( 5 ) ,  the set of equations becomes 

If C2 is eliminated by 

di E KAvi 
dt 

dC1 - = K I V .. KIFVCl K C dt 1F 01 1B 1 



This set of simultaneous equations can then be solved by a standard power se r i e s  

approach using the series expansions 

07 
n 

i = E a t  
n = O  

Go 

V = 2 bntn 
n=O 

(9) 

subs t i tu t ing  the series representations ( 9 ) ,  (10) and (11) in to  equations (6), 

(7) and (8) and equating coeff ic ients  of corresponding powers of t yields the 

following expressions for the expansion coeff ic ients :  

n - 1  

n - 1  

n - 1  1 

These expressions are val id  fo r  n 31. For n = 0, 

a = i  

bo = V 
0 0 

0 

I f  both secondary defect complexes a re  associated with the same impurity element, 

- Cl - C In th i s  case, the annealing equations are: 2' 
= I  = I a n d I - I  

I1 2 0 



i - di = - KA V i  
d t  

i - V f C  + c  
1 2  

If C is eliminated as before, the system of equations t o  be solved is: 
2 

- KAVi d t  

1 dc - - K V ( I o + V - i ) - K  
d t  2F LB '1 

The series expansions (9), (lo),  and (11) can again be employed. 

same procedure as before leads t o  these general expressions for  the expansion 

coeff ic ients  for n 5 1: 

Following the 

1 

n -  
- 

n 1 n - 1  

i";T 0 n-1 
+ 5- 3 . -  a - K  

d K2F [I 
n ; O n - 1  b ibn=l - i  KA n i  -.$ d 

c 



The k ine t ic  annealing model can be further extended t o  include an a rb i t ra ry  

number, J, of types of secondary defect complexes involving vacancies and 

impurity atoms. The schematic representation of the model i n  t h i s  case is: 

V + i + KA Annihilation 
K 

1F 
V + I  4 

1 1 c+c 
K I B  

It w i l l  be assumed tha t  each type of defect complex involves a di f fe ren t  

impurity element. The annealing equations for  t h i s  general case are: 

J' 

.-c 
J 

i = v + 2 .  c 
j = l  j 

The conservation relat ion (30) can be used t o  eliminate one of the C and 
j 

thus reduce by one the number of d i f fe ren t ia l  equations t o  be solved. 

t h i s  is not necessary and is of marginal benefit  i f  J is large. 

t h i s  case, the complete set of d i f fe ren t ia l  equations w i l l  be solved by the 

power series method. 

However, 

Therefore, in 

Equation (30) can then be used as  a check on the series 

( 5 )  solutions. 
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The required ser ies  expansions are  

cu 
n i =  a t  

n = O  
n 

V = 2 bntn 
n = O  

CY;, 

C, = d j  tn (33) 
J n = ~  n 

Introducing the ser ies  expansions (31), (32), and (33) into the system of equations 

(27), (28), and (29)  and yields the following expressions for  the expanslnn 

coefficients when n 1: 

(34)  

(35) 

The objective in  extending the kinet ic  annealing model t o  include more than one 

type of secondary defect complex is to  obtain a more r e a l i s t i c  model. For ex- 

ample, Watkins and Corbett (1) have established the existence of approximately 

20 types of secondary defect complexes i n  i r radiated s i l icon ,  Isothermal defect 

annealing in  s i l i con  can be quali tatively described by considering only one defect 

complex; the S i  - E center (vacancy trapped by a doping impurity atom) or the 

S i - A  center (vacancy trapped by an oxygen atom) depending on the re la t ive  concen- 

t ra t ions  of the trapping agents. A complete quant i ta t ive description of the 

isothermal annealing process may require the consideration of a t  l ea s t  these two 

defect complexes. 

(6) 
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ERROR ESTIMATES - FOR SERIES SOLUTIONS ANNEALING EQUATIONS - 
Series solutions of the isothermal annealing equations have been obtained for  

several cases. The general procedure for carrying out numerical calculations 

using these solutions is t o  perform computer computations t o  evaluate a f i n i t e  

number of ser ies  expansion coefficients for each variable involved. The se r i e s  

expansions a re  thus truncated a f t e r  a f i n i t e  number of terms. The exact number 

of terms retained depends, of course, on the accuracy desired. This truncation 

process introduces errors  i n  the annealing variables. 

The truncation error  was investigated for the simplest case of only one defect 

complex. There are  three ser ies  expansions to  be investigated in  t h i s  case; 

b tn n v =  - 
n - 0  

L n  
S n a C = z  d t  n 

n = O  1 
1 

The coeff ic ients  an, b, and dn are given by equations ( 3 4 ) ,  (35), and (36) with 

J s l a s  

*I n - 1  a . I - - z  KA a b  
i n - 1 - i  

i - 0  n 
(37) 

1 
K 1B +,1 (38) 

n - 1  1 
b n =  a n - b n - l  n KIFIOl 4- KIF - n i = o  d i b n - l - i + n  

b - K  1 K n - 1  1 
1 

n KIFIOl n - 1 2 d -2 7- 
n n n - 1  * ic;To 

(39) 

For parameters character is t ic  of irradiated S i  and G e  crystals ,  the term an i n  

equation (38) dominates the other terms. 

is the same as an. 

must have al ternat ing signs. 

Therefore, the algebraic sign of bn 

I f  t h i s  is the case, by inspection of equation (37) the an 

It then follows tha t  the bn have alternating signs. 



By inspection of equation (39), the dn must also have alternating signs. 

For a series of terms with alternating signs, the error resulting from the 

truncation of the series (the sum of the remaining terms) is always smaller in 

absolute value than the last term retained. The truncation error in i, V, and 

C The computer program for evaluating a set of 

series expansion coefficients can be designed to select a number of coefficients 

such that the truncation error is less than some predetermined value. 

can then be readily determined. 1 

EVALUATION OF THE ANNEALING MODEL WITH ONE DEFECT COMPLEX AND KA # %p 

This represents an extension of the study described in the previous progress 

report ("Defect Annealing in Irradiated Semiconductors", Progress Report No. 1, 

October 1, 1964). 
18. 

The previous study was restricted to the case KA = K 

The power series solutions of the annealing equations were employed. 

computer generated isothermal annealing curves for KA. 

qualitatively correct. 

have been made as yet, 

on investigating the effect of varying the model parameters on the level of the 

plateau in the isothermal annealing curve. The objective here was to establish 

a procedure for determining a set of model parameters to give a particular 

plateau level. 

data with a theoretical annealing curve. 

The 

were found to be 
+ KIF 

No detailed attempts to fit experimental annealing curves 

Primary emphasis during this report period was placed 

This is a necessary first step in attempting to fit experimental 

A systematic variation of model parameters in conjunction with computer calcula- 

tions of plateau levels led to the conclusion that the plateau level depends only 

The fraction of defects not annealed at the plateau level must then have the 

functional f o m  



Figure 1 is based on calculated plateau levels for a range of values of I /i 

and KA/KIF. 

dicated i n  equation (40) has not yet been determined. 

be used as a guide in  selecting a set of empirical model parameters t o  produce 

a part icular  plateau level. 

0 0  

The exact mathematical form of the functional relationship in- 

However, Figure 1 can 

It might be noted that  additional f l ex ib i l i t y  is gained by removing the 

K = K 

Annealing i n  Irradiated Semiconductors", Progress Report No. 1, October 1, 

1964), it was found that  the plateau level depended only on the r a t i o  0 . 

rest r ic t ion.  In the evaluation of the K = RIF case ("Defect A 1F A 

I 
f L 
0 
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